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Abstract
We study the Bäcklund symmetry for the Moyal Korteweg–de Vries (KdV)
hierarchy based on the Kupershmidt–Wilson theorem associated with second
Gelfand–Dickey structure with respect to the Moyal bracket, which generalizes
the result of Adler for the ordinary KdV.

PACS numbers: 02.30.Ik, 11.10.Ef

In [1], Adler provided an elegant approach to the Bäcklund transformation for the generalized
Korteweg–de Vries (KdV) equations [2,3] by exploring the hidden symmetry of the associated
modified KdV equations. The approach is intimately related to the Kupershnidt–Wilson (KW)
theorem [4] (see also [5, 6]) for the second Gelfand–Dickey (GD) bracket [2, 3], the
Hamiltonian structure of the KdV, in which the Miura variables play an important role, based
upon which some generalizations including Toda [1], Drinfeld–Sokolov [7], Kadomtsev–
Petviashvili [8–10], supersymmetric KdV [11] and q-deformed KdV [12] hierarchies can
be formulated in a similar way.

In this Letter, we should like to generalize the approach to the second GD structure with
respect to the Moyal bracket [13] defined by

{f, g}κ = f � g − g � f
2κ

(1)

where f and g are two arbitrary functions on the two-dimensional phase space with coordinate
(x, p) and the �-product [14] is defined by

f � g =
∞∑
s=0

κs

s!

s∑
j=0

(−1)j
(
s

j

)(
∂jx ∂

s−j
p f

)(
∂s−jx ∂jpg

)
. (2)

The Moyal bracket (1) can be viewed as the higher-order derivative generalization of the
canonical Poisson bracket since it recovers the canonical Poisson bracket in the dispersionless
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limit κ → 0, i.e. limκ→0{f, g}κ = ∂pf ∂xg − ∂xf ∂pg. Therefore the Lax equations defined
by the Moyal bracket can be viewed as a one-parameter deformation of dispersionless Lax
equations (see [15] for a review) defined by the canonical Poisson bracket.

Our main results contain two parts. In theorem A, we prove the KW theorem for the
second GD structure with respect to the Moyal bracket, which simplifies the associated
Hamiltonian flows in terms of the Miura variables. We then, in theorem B, show that the
Bäcklund transformation for the generalized Moyal KdV hierarchy can be traced back to the
permutation symmetry of the Miura variables via the KW theorem and thus generalize Adler’s
work to the present case.

To begin with, we consider an algebra of Laurent series of the form � = {A|A =∑N
i=−∞ aip

i} with coefficients ai depending on an infinite set of variables t1 ≡ x, t2, t3, . . . .
The algebra � with respect to the Moyal bracket (1) can be decomposed into the sub-
algebras as �+ ⊕ �−, where the subscript + stands for the projection onto the non-negative
powers in p. It is obvious that � is an associative but noncommutative algebra under the
�-product. For a given Laurent series A = ∑

i aip
i one defines its residue as res(A) = a−1

and its trace as tr(A) = ∫
res(A). For any two Laurent series A = ∑

i aip
i and B =∑

j bjp
−j it is easy to show that (i)

∫
res(A � B) = ∑

i

∫
aibi+1, (ii) tr{A,B}κ = 0 and

(iii) tr(A � {B,C}κ) = tr({A,B}κ � C). Given a functional F(A) = ∫
f (a) we define its

gradient as δF/δA ≡ dAF = ∑
i δF/δaip

−i−1, where the variational derivative is defined by
δF/δak = ∑

i (−∂x)i(∂f/∂a(i)k ), with a(i)k ≡ ∂ixak, ∂ ≡ ∂/∂x. Note that we use the notations
∂xf = f ′ = fx throughout this paper.

Let us consider the Lax equations

∂L

∂tk
= {(L1/n�)k+, L}κ (L1/n�)k+ = (L1/n � L1/n � · · · � L1/n︸ ︷︷ ︸

k

)+ (3)

where the Lax operator L = pn +
∑n−2
i=0 uip

i is a polynomial in p and L1/n = p +
∑
i=1 aip

−i

is the nth root of L in such a way that L = (L1/n�)n. The Lax equation (3) defines the
dynamical flows for ui , which form what we call the generalized Moyal KdV hierarchy. Note
that the highest order in p on the right-hand side of the Lax equations (3) is n − 2, and thus
one can drop the term un−1 in the Lax formulation without causing any problem. However,
we shall see that imposing the constraint un−1 = 0 induces a modification in the Hamiltonian
formulation.

For the polynomial L = pn +
∑n−1
i=0 uip

i and functionals F [L] and G[L] we define the
second GD bracket [2, 3] with respect to the �-product as

{F,G}2(L) = tr [J2(dLF ) � dLG] (4)

in which J2 is the Adler map [16] defined by

J2(X) = {L,X}κ+ � L− {L, (X � L)+}κ (5)

where X = ∑n
i=1 xip

−i−1. The bracket (4) is anti-symmetric due to the cyclic property of
the trace and satisfies the Jacobi identity that will be justified later on. In the κ → 0 limit (4)
recovers the dispersionless GD bracket [17].

Theorem A (Kupershmidt and Wilson). Let L = pn +
∑n−1
i=0 uip

i = A � B where
A = pm +

∑m−1
i=0 aip

i and B = pl +
∑l−1
i=0 bip

i and m + l = n; then we have

{F,G}2(L) = {F,G}2(A) + {F,G}2(B). (6)

Proof. From the variation
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δF = tr(dLF � δL)

= tr(dLF � δA � B + dLF � A � δB)

= tr(dAF � δA) + tr(dBF � δB)

we have dAF = B � dLF and dBF = dLF � A. Then

RHS = tr[{A, dAF }κ+ � A � dAG− {A, (dAF � A)+}κ � dAG] + (A↔ B)

= 1

2κ
tr[(A � dAF)+ � A � dAG− (dAF � A)+ � A � dAG)

−A � (dAF � A)+ � dAG + (dAF � A)+ � A � dAG] + (A↔ B)

= 1

2κ
tr[(A � dAF)+ � A � dAG− A � (dAF � A)+ � dAG] + (A↔ B)

= tr[J2(dLF ) � dLG].

�
If we factorize the Lax operator as

L = pn +
n−1∑
i=0

uip
i = (p − φn) � · · · � (p − φ1) (7)

then the coefficients ui can be expressed in terms of Miura variables φi as

un−1 = −
n∑
i=1

φi

un−2 =
∑
i>j

φiφj − κ
n∑
i=1

(n− 2i + 1)φ′
i

...

(8)

which constitute the Miura transformation. Therefore under the factorization (7), by theorem A,
the second GD structure (4) can be simplified as follows:

{F,G}2(L) =
n∑
i=1

∫ (
δF

δφi

)′ (
δG

δφi

)
.

In particular,

{φi(x), φj (y)}2 = −δij ∂xδ(x − y) (9)

which immediately verifies the Jacobi identity of the GD bracket (4).
The second Hamiltonian structure for the generalized Moyal KdV hierarchy can be

obtained from (4) by imposing the constraint un−1 = − ∑n
i=1 φi = 0. Using (9) we obtain

{un−1(x), un−1(y)}2 = −n∂xδ(x−y), which has an inverse for n = 0 and hence the constraint
is second class. The standard Dirac procedure thus gives the modified Adler map as

JD2 (X) = {L,X}κ+ � L− {L, (X � L)+}κ +
1

n

{
L,

∫ x

res{L,X}κ
}
κ

(10)

or, in terms of Miura variables,

{φi(x), φj (y)}D2 =
[

1

n
− δij

]
∂xδ(x − y). (11)

On the other hand, one might obtain the associated first GD structure for the Moyal KdV by
shifting L→ L + λ in (10) and then extract the term linear in λ [3]. It turns out that

J1(X) = {L,X}κ+ (12)
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which is compatible with the reduction un−1 = 0. As a result, the bi-Hamiltonian flows for
the generalized Moyal KdV hierarchy can be written as

∂L

∂tk
= JD2 (dLHk) = J1(dLHk+n) (13)

with

Hk = n

k

∫
res(L1/n�)k.

Next we turn to the Bac̈klund transformation for the Moyal KdV hierarchy. Our strategy
is to rewrite the hierarchy flows in terms of the Miura variables. Following Adler [1] we
define the permutation + : φ1 → φ2, φ2 → φ3, . . . , φn → φ1, then L+i = (p − φi) � (p −
φi−1) � · · · � (p − φi+1). In particular, L+n = L+0 = L and L+i = pi � L+i−1 � p−1

i where
pi ≡ p − φi and its inverse p−1

i can be expressed as exp(
∫ x
φi/2κ) � p � exp(− ∫ x

φi/2κ)
and exp(

∫ x
φi/2κ) � p−1 � exp(− ∫ x

φi/2κ), respectively.

Theorem B (Adler). The Miura variables φi satisfy the following modified Moyal KdV
equations:

∂φi

∂tk
= 1

2κ

[
pi � B

(k)

+i−1 − B(k)
+i
� pi

]
(14)

where B(k)
+i

≡ (L1/n
+i
�)k+.

Before proving (14) we observe that (14) is compatible with the Lax flows (3) since from
the factorization form of L we have

∂L

∂tk
= −

n∑
i=1

pn � · · · � pi+1 �
∂φi

∂tk
� pi−1 � · · · � p1

= − 1

2κ

n∑
i=1

pn � · · · � pi+1 �
(
pi � B

(k)

+i−1 − B(k)
+i
� pi

)
� pi−1 � · · · � p1

= {B(k), L}κ .
Lemma. The Hamiltonian flows for the Miura variables φi can be expressed as

∂φi

∂tk
= res

{
pi, pi−1 � · · · � p1 � (L

1/n�)k−n � pn � · · · � pi+1
}
κ
. (15)

Proof. From the variation
δL

δφi
= δL1/n

δφi
� L1/n � · · · � L1/n

+L1/n �
δL1/n

δφi
� · · · � L1/n

...

+L1/n � L1/n � · · · � δL
1/n

δφi

we have
δHk

δφi
= n tr

[
δL1/n

δφi
� (L1/n�)k−1

]

= tr

[
δL

δφi
� (L1/n�)k−n

]

= −res
[
pi−1 � · · · � p1 � (L

1/n�)k−n � pn � · · · � pi+1
]
.
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Hence

∂φi

∂tk
= {φi,Hk}D2 =

∑
j

[
1

n
− δij

] (
δHk

δφj

)′

= −
∑
j

[
1

n
− δij

] {
pj , res[pj−1 � · · · � p1 � (L

1/n�)k−n � pn � · · · � pj+1]
}
κ

= res
{
pi, pi−1 � · · · � p1 � (L

1/n�)k−n � pn � · · · � pi+1
}
κ
.

�

Proof of theorem B. From the relation L+i = pi � L+i−1 � p−1
i we have

B
(k)

+i
= (
L

1/n
+i
�

)k
+

= (
pi � B

(k)

+i−1 � p
−1
i

)
+

= pi � B(k)+i−1 � p
−1
i − (

pi � B
(k)

+i−1 � p
−1
i

)
−.

Then
1

2κ

[
pi � B

(k)

+i−1 − B(k)
+i
� pi

] = 1

2κ

(
pi � B

(k)

+i−1 � p
−1
i

)
− � pi

= 1

2κ
res

(
pi � B

(k)

+i−1 � p
−1
i

)

= 1

2κ

[
res

(
pi � (L

1/n
+i−1�)

k � p−1
i

) − res
(
L

1/n
+i−1 �

)k]
= res

{
pi, pi−1 � · · · � p1 � (L

1/n�)k−n � pn � · · · � pi+1
}
κ

which, by lemma, completes the proof of theorem B. �

We emphasize here that (15) (and hence (14)) is consistent with the constraint un−1 =
− ∑

i φi = 0.
Thus the cyclic permutation+ generates the Bäcklund transformation of the hierarchy due

to the fact that the form of the Lax operator and the hierarchy flows are preserved under such
transformation. In particular, the one-step permutation+: L+i−1 → L+i defines an elementary
Bäcklund transformation. Indeed, if L+i−1 satisfies (3), then the transformed Lax operator L+i
satisfies

∂L+i

∂tk
=

{
pi � B

(k)

+i−1 � p
−1
i + 2κ

∂pi

∂tk
� p−1

i , L+i

}
κ

=
{
pi � B

(k)

+i−1 � p
−1
i − 2κ

∂φi

∂tk
� p−1

i , L+i

}
κ

= {
B
(k)

+i
, L+i

}
κ

where (14) was used to reach the last line.
Finally let us work out the simplest example to illustrate the obtained results. For n = 2

we have L = p2 + u and the first few Lax flows are given by

ut1 = ux
ut3 = 3

2uux + κ2uxxx

ut5 = 15
8 u

2ux + 5
2κ

2(uuxxx + 2uxuxx) + κ4u(5)

...

. (16)
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The set of equations (16) is referred to as the Moyal KdV hierarchy [18–22]. For the
Hamiltonian formulation, we can read off the Poisson brackets from (13) as [21, 22]

{u(x), u(y)}1 = 2∂xδ(x − y)
{u(x), u(y)}D2 = [2κ2∂3

x + 2u∂x + ux]δ(x − y). (17)

The first few Hamiltonians for the Moyal KdV are

H1 =
∫
u H3 = 1

4

∫
u2 H5 = 1

8

∫
(u3 + 2κ2uuxx)

H7 = 1
64

∫
(5u4 − 40κ2uu2

x + 16κ4u2
xx)

which together with (17) provides the bi-Hamiltonian flows

∂u

∂t2n+1
= [2κ2∂3

x + 2u∂x + ux]
δH2n+1

δu
= 2∂x

δH2n+3

δu
.

We remark that when κ = 0 the Moyal KdV hierarchy reduces to the dispersionless KdV
hierarchy [23] since all higher-order derivative terms disappear. On the other hand, (16)
collapses to the ordinary KdV for κ = 1/2 due to an isomorphism between them [24] and thus
the Moyal parameter κ characterizes a kind of dispersion effect.

Furthermore consider the factorization of the Lax operatorL = p2 +u = (p−φ)�(p+φ),
which gives the Miura transformation (or Riccati relation) u(φ) = −φ2 + 2κφ′. Then the
Poisson algebra (17) can be easily rederived by using that bracket of the Miura variable (free-
field) φ. Permuting the Miura variable (φ → −φ) gives a new Lax operator L+ = p2 + u+ =
(p + φ) � (p − φ) with u+(φ) = u(φ)− 4κφ′. Now suppose the solutions of the Moyal KdV
equations can be parametrized by a single function τ , the so-called tau-function, such that
u(x; t) = 8κ2∂2

x ln τ(x; t). Then the Adler approach to the Bäcklund transformation leads to
the following transformation rule for tau functions:

τ(x; t)→ τ+(x; t) = exp

[
− 1

2κ

∫ x

φ

]
· τ(x; t) (18)

which reduces to the ordinary case [25] when κ = 1/2.
In summary, we have investigated the Bäcklund transformation for the Moyal KdV

hierarchy from the viewpoint of the KW theorem. It turns out that the cyclic permutations of
the Miura variables provide the elementary Bäcklund transformations of the hierarchy which
can be expressed in terms of tau functions. It would be interesting to see whether the Moyal
KdV hierarchy (16) has corresponding Hirota bilinear equations with (18) as a symmetry.

MHT thanks the National Science Council of Taiwan (grant numbers NSC 89-2112-M-194-020
and NSC 90-2112-M-194-006) for support.

References

[1] Adler M 1981 Commun. Math. Phys. 80 517
[2] Gelfand I M and Dickey L A 1976 Funct. Anal. Appl. 10 4
[3] Dickey L A 1991 Soliton Equations and Hamiltonian Systems (Singapore: World Scientific)
[4] Kupershmidt B A and Wilson G 1981 Invent. Math. 62 403
[5] Dickey L A 1983 Commun. Math. Phys. 87 127
[6] Mas J and Ramos E 1995 Phys. Lett. B 351 194
[7] Gesztesy F, Race D, Unterkofler K and Weikard R 1994 Rev. Math. Phys. 6 227
[8] Gesztesy F and Unterkofler K 1995 Diff. Integral Eqns 8 797
[9] Cheng Y 1995 Commun. Math. Phys. 171 661

[10] Dickey L A 1999 Lett. Math. Phys. 48 277



Letter to the Editor L629

[11] Shaw J C and Tu M H 1998 Mod. Phys. Lett. A 12 979
[12] Tu M H and Lee C R 2000 Phys. Lett. A 266 155
[13] Moyal J E 1949 Proc. Camb. Phil. Soc. 45 90
[14] Groenewold H 1946 Physica 12 405
[15] Takasaki K and Takebe T 1995 Rev. Math. Phys. 7 743 and references therein
[16] Adler M 1979 Invent. Math. 50 219
[17] Figueroa-O’Farrill J M and Ramos E 1991 Phys. Lett. B 262 265
[18] Kupershmidt B A 1990 Lett. Math. Phys. 20 19
[19] Strachan I A B 1995 J. Phys. A: Math. Gen. 28 1967
[20] Koikawa T 2001 Prog. Theor. Phys. 105 1045
[21] Tu M H 2001 Phys. Lett. B 508 173
[22] Das A and Popowicz Z 2001 Phys. Lett. B 510 264
[23] Krichever I 1992 Commun. Math. Phys. 143 415
[24] Gawrylczyk J 1995 J. Phys. A: Math. Gen. 28 4381
[25] Chau L L, Shaw J C and Yen H C 1992 Commun. Math. Phys. 149 263


